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Abstract  10 

Coastal mangroves, thriving at the interface between land and sea, provide robust flood risk reduction. Projected 

increases in the frequency and magnitude of climate impact drivers such as sea level rise, wind and wave climatology 

reinforce the need to optimize the design and functionality of coastal protection works to increase resilience. Doing so 

effectively requires a sound understanding of the local coastal system. However, data availability particularly at muddy 

coasts remains a pronounced problem. As such, this paper captures a unique dataset for the Guyana coastline and focuses 15 

on relations between vegetation (mangrove) density, wave attenuation rates and sediment characteristics. These 

processes were studied along a cross-shore transect with mangroves fringing the coastline of Guyana. The data are 

publicly available at 4TU Centre for Research Data via https://doi.org/10.4121/c.5715269 (Best et al., 2022) where the 

Collection: Advancing Resilience Measures for Vegetated Coastline (ARM4VEG), Guyana comprises of six  key 

datasets. 20 

Suspended-sediment concentrations typically exceeded 1 g/l with a maximum of 60 g/l, implying that we measured 

merely fluid mud conditions across a 1 m depth. Time series of wind waves and fluid-mud density variations, recorded 

simultaneously with tide elevation and suspended sediment data, indicate that wave/fluid-mud interactions in the 

nearshore may be largely responsible for the accumulation of fine, muddy sediment along the coast. Sediment properties 

reveal a consolidated underlying bed layer. Vegetation coverage densities in the Avicennia dominated forest were 25 

determined across the vertical with maximum values over the first 20 cm from the bed due to the roots and 

pneumatophores.  

Generalized total wave attenuation rates in the forest and along the mudflat were between 0.002 – 0.0032 m− 1 and 

0.0003 – 0.0004 m-1 respectively. Both the mangroves and the mudflats have a high wave damping capacity but the 

wave attenuation in the mangroves is presumably dominated by energy losses due to vegetation drag, since wave 30 

attenuation due to bottom friction and viscous dissipation on the bare mudflats is significantly lower than those inside 

the mangrove vegetation. Data collected corroborate the coastal defence function of mangroves by quantifying their 

contribution to wave attenuation and sediment trapping. The explicit linking of these properties to vegetation structure 

facilitates modelling studies investigating the mechanisms determining the coastal defence capacities of mangroves. 
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1 Introduction 35 

Mangroves belts are key ecosystems residing in the intertidal area of tropical and sub-tropical coastlines and a key 

component in the discussion of green-grey infrastructure (Blankespoor et al., 2017; Kg et al., 2017; Horstman et al., 

2014; Beck, 2016; Borsje et al., 2011; Bao, 2011). Although, there has been much debate about the quantifiable 

integration of mangroves into engineered coastal protection works  (Feagin et al., 2010; Van Zelst et al., 2021; Tusinski 

and Verhagen, 2014; Dasgupta et al., 2017), the knowledge on the importance of mangroves has been highlighted and 40 

discussed by several authors (Zhang et al., 2012; Tusinski and Verhagen, 2014; Sasmito et al., 2016). Mangroves have 

a high tolerance for harsh conditions in the intertidal area: tidal flooding, exposure to waves and varying degrees of 

salinity(Mazda et al., 1997; Mazda et al., 2006; Hogarth, 2015; Willemsen et al., 2015). Forming a buffer between land 

and sea, in areas with and without robust sea defences, mangroves contribute to the attenuation of wave energy and to 

the stabilization of the foreshore (Pilato, 2019; Hong Phuoc and Massel, 2006; Horstman, 2014). Waves propagating 45 

through submerged and emergent vegetation lose energy due to the turbulent flow separation induced by the stems, roots 

and branches, resulting in the creation of a drag force. The amount of dissipated wave energy depends upon the 

mangrove height, surface area, location, density, distribution and root structure (Dalrymple et al., 1984; Mcivor et al., 

2012b). Despite, these invaluable ecosystem services, mangrove coverage is on a rapid decline (Food and Organization, 

2007; Spalding, 2010). Therefore, there is a vital need to explore in depth the physical contribution of mangroves locally 50 

to reducing coastal vulnerability to hazards such as sea level rise and extreme waves in order to adequately optimize the 

project planning and designing phases for green- grey infrastructure. 

Along the Guyana coastline, a major mangrove coast from a global perspective, the area is under pressure from landward 

side due to the changes in land use (agricultural to residential). Large parts of the mangroves have been removed for 

fisheries and sea defences. From the seaward side, the mudbank dynamics offshore influence the sediment delivery 55 

towards the mangrove area. The combined impact from landward and seaward reduces the possibilities for mangrove 

regeneration. In the late 18th century the mangrove belt covered the entire Guyana coastline, with the exception of the 

main river outlets. However, a 72% reduction in the mangrove coverage was reported in 2001, with the largest remaining 

intact mangrove system situated along the Waini-Pomeroon coast in Region 1 (Bovell, 2019). Large areas of the coast 

have become effective monoculture stands of Avicennia, more so with the planting of this species during the nationwide 60 

restoration works (Augustinus, 1978). Traditionally three species were observed, of which the Black mangrove 

(Avicennia germinans) was the dominant species. The other secondary species include the Rhizophora mangle (Red 

mangrove), and Laguncularia racemosa (White mangrove) which vary in density along the coastal plain. On the large 

developing sand banks and mudflats that dominate the coast in the west Corentyne Region, Laguncularia and Avicennia 

are both pioneering species within the mudflats. But, along the lower East Coast of Guyana, Laguncularia has colonized 65 

parts of the small developing mudflats. Augustinus (1978) proposed that “the sling-mud along the coast of the Guianas 

is so little consolidated that it can be fluidized by wave action to a certain depth”, thus preventing the settlement of 

Rhizophora. Contrastingly, Avicennia embryos can establish in this regime, and so Avicennia becomes the single 

pioneering species. 

With the country’s initiation of the mangrove restoration programme in 2010, the Guyana Mangrove Restoration and 70 

Management Department, has taken strides towards advancing the   protection and expansion of these greenbelts through 

a combination of efforts on a national scale and site specific (planting seedlings, incorporating green-grey solutions 

through the combination with geotextile breakwaters, brushwood dams and, restoring the hydrological functions) 

(Bovell, 2019). However, Guyana’s remaining mangrove forests are threatened by a range of natural and man-made 
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factors. Natural threats to mangroves in Guyana include natural erosive and accretive cycles characteristic of the 75 

coastline of the Guianas (Amazon river to the Orinoco river) with the large-scale mud bank movements (Augustinus, 

1978). The area in between two mudbanks is referred to as the interbank area. Behind a mudbank, the hydrodynamic 

conditions are mild, and the coastline can accrete, whilst the coastline of the interbank area is exposed directly to ocean 

waves –coastlines then erode. The man-made factors affecting mangroves include the direct loss of habitat as a result 

of land development for housing and urban development, agriculture and aquaculture and infrastructure development 80 

(e.g. canals, sea defence infrastructure, power lines etc). Therefore, the recognition of the vital ecosystem functions of 

mangroves, threats and the rising cost of maintenance of the sea defence structures, is a necessity in initiating sustainable 

mechanisms (infrastructural, community-based, institutional),  for Guyana’s coastal hinterland.  

These sustainable mechanisms encompass data driven (hydrodynamics, mangrove species adaptation to changing 

boundary conditions and resilience to climate change, extreme condition analysis, geomorphology and mangrove 85 

mudbank monitoring) projects to steer the economical and efficient management of the coastal zone. Therefore, the 

enhancement of the knowledge on the contributing processes determining wave attenuation in mangroves requires 

mechanistic studies of the propagation of waves through vegetation. Recent advances in numerical modelling explicitly 

resolve vegetation induced drag forces by integrating friction forces over a composition of one or several layers of rigid 

vertical cylinders e.g. (Best, 2017; Vo-Luong and Massel, 2008; Jacobsen and Mcfall, 2019). For a reliable 90 

representation of the vegetation, this approach compels detailed, site specific information on vegetation characteristics 

such as stem and root diameters, vertical vegetation distribution, vegetation densities and (bulk) drag coefficients. Field 

data comprising accurate measurements of both hydrodynamics (wave heights, water depths and, if possible, flow 

velocities) and vegetation parameters is indispensable for further development of the abovementioned numerical models 

(Smits, 2016; Horstman et al., 2014; Mcivor et al., 2012a; Mcivor et al., 2012b). Both hydrodynamics and vegetation 95 

parameters are changing from site to site, depending on local geography, wave climate and vegetation composition. 

Mazda et al. (1997) identified detailed vegetation parameters and quantifying the volume of submerged mangrove 

biomass. This concept will be deployed in the present paper.  

This paper addresses measured correlations between vegetation densities, wave attenuation, sediment characteristics 

and sedimentation rates in mangroves. It forms the first extensive dataset for the Guyana coastline describing the 100 

attenuating capacity of the mangroves as well as the morphological development. We aim to correlate the total wave 

attenuation through a mangrove system with the volume-percentage of submerged mangrove biomass for variable 

vegetation compositions and densities, pursuing an explicit relation between the mangrove density and the wave 

attenuation capacity of mangroves. Along with these bio-physical interactions, we aim to link the attenuated 

hydrodynamic conditions to sediment properties within mangroves. These correlations will be based on the results of a 105 

comprehensive field campaign along a cross-shore transect through the mangrove fringe, combining measurements of 

the hydrodynamics and sediment dynamics at multiple positions along these transects with the collection of detailed 

topographic and vegetation data. 

This paper describes the datasets obtained in 2019 and 2020. The Advancing Resilience Measures for Vegetated 

Coastline (ARM4VEG), Guyana dataset is accessible via https://doi.org/10.4121/c.5715269. The repositories include 110 

the raw and processed data as well as relevant metadata and processing scripts (Best et al., 2022). 
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2 Data collection field site 

2.1 System characteristics 

The data collection site is located in the fringing mangroves along the north eastern coastline of Guyana’s coastal plain 

(as defined in Fig. 1 A and Fig. 1 B). This area forms part of the 1600 km long coastal system that is dominated by 115 

extensive mudbanks which migrate westward from the Amazon Delta in Brazil to the Orinoco Delta in Venezuela in a 

wave-form with crests (high bed levels and concentrations) and troughs (low bed levels and concentrations). The 

wavelength of these mudbanks varies from 25 - 50 km, with an approximate average of 40 km (Allison et al., 1995; 

Eisma and Van Der Marel, 1971; Eisma, 1967). The presence of the wave crest – the ‘bank’ phase - results in increased 

deposition due to the reduced turbulence and increased rates of flocculation, while the coastline erodes during periods 120 

of the wave trough (the ‘interbank’ phase). The shoreline and nearshore subtidal areas undergo rapid changes because 

of the cyclic deposition and erosion patterns with the cycles averaging 30 years.  

The mudbanks travel along the coast at a rate of about 1 - 3 km per year. The visible intertidal part of the mudbank is 

characterised by a mudflat and often mangrove colonization. During the bank phase a typical transect would cover a 

100- 500 m mangrove belt followed by 2000 m of intertidal mudflat adjacent to a 10- 12 km mudbank with levels 125 

varying between 3.5 m below MSL near the mudflat to 20 m below MSL at the seaward edge. 

The Chateau Margot area, as shown in Fig. 1 C, consists of a wide vegetated mudflat with a fringe of 120m – 400m in 

width and length of 1200m. The tide is semi-diurnal with an  average tidal range fluctuating between 1.17 m during an 

average neap tide and 2.5 m  during an average spring tide, with reference to the mean sea level. The tidal range is very 

similar along the coast and tidal filling and emptying of the Guyana coastal system occurs more or less perpendicularly 130 

to the coast so the tide hardly generates longshore currents. The Chateau Margot hinterland is approximately 1m below 

sea level  and the several kilometres of mudflat extending offshore area exposed during the low tide. The Guyana Coast 

is influenced by stable trade winds; strong winds and associated surges do not often occur and there are no tropical 

storms in the area. The strongest winds occur in the period December – March/April and vary between 3 - 8 m/s from 

a predominant northeast direction. The currents in the Guyana coastal system are driven by the tide, trade wind and to 135 

a lesser extent by waves. The measured currents, at 25 m depths offshore, have a magnitude between 0.1 and 0.5 m/s 

and a direction varying between 240 °N and 360 °N.  

Using the data obtained from NOAA WWIII Wave Models (Global and WNA) in 2004 by Haskoning-Nederland and 

Delft-Hydraulics (2005) and later validated with AWAC measurements, along with the ERA5 hindcast data and 

historical wave data from 1969 -1971 (Table 1), the following can be concluded about the wave environment: 140 

• The average offshore significant wave height varies between 1.25 m in July/August to about 2.0 – 2.25 m in 

December/January with a historical maximum of 4m.  

• The peak wave period varies between 6 – 10 s with an average of 7.5 s, but during the months of September to 

April the offshore peak period may increase to 16 s. This increase was observed 3 – 5 times per year and may be 

attributed to tropical storms or hurricanes in the Atlantic Ocean or Caribbean Sea, as well as from severe 145 

depressions originating from the northern part of the Atlantic Ocean (Van Ledden et al., 2009). 

• Wave originates from the North - North-easterly directional sector and varies between 45°N and 75 °N 

offshore. 
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2.2 Rationale for transect alignment 

Chateau Margot is open to the oceanic swells generated by the northeast trade winds, which propagate along the coast 150 

refracting around the large expanse of Avincennia germinans along the coastline. The area was restored by the Guyana 

Mangrove Restoration Project with the planting of 13,000 seedlings in 2011. Over time, the Avicennia germinans has 

established itself as the dominant species with the secondary establishment of Lunguncularia racemosa, Rhizophora 

mangle and salt marshes.  

Given the limitation of the wave direction to the north eastern directional sector,  determined by the ERA 5 hindcast 155 

data for the years 1979 - 2017, the wave attenuation measurement transect was aligned in the predominant incoming 

wave direction, i.e. north east as shown in Fig. 2 A. The transect featured a gently sloping foreshore  with an average 

of 1:1500. The zonation patterns can be observed in Fig. 2 B. Along this transect, eight measurement locations were 

selected to ensure maximum coverage of the area and representation of the variability within the fringe (Fig. 2 A). 

Data Collection and Processing 160 

All instruments were deployed five times along the transect MB. Deployments during the period 2019 – 2020 spanned: 

22 - 23 November, 24 - 29 November, 3 - 9 December, 12 - 17 December, 20 - 28 December and  1 - 11 January. Within 

the mangroves, deployment coincided with the falling tide, while deployment on the mudflat was achieved during the 

rising tide. A description of all of the measurement stations is shown in Table 2. 

2.3 Bed level elevation survey 165 

We mapped the topography of the collection site thoroughly using a combination of the Precision Automatic Level, 

echo sounder and a theodolite. A permanent bench mark (PBM) was first established at the base of the earthen 

embankment by transferring a nearby benchmark (located at the pump station). A quadrant of 1000 m (parallel to the 

dyke) by  3500 m (extending offshore from the edge of the dyke) was established and subdivided using 11 transects 

spaced at 100 m within the mangroves while along the mudflat a 100 m spacing was used. Along each transect, 170 

measurements were then taken every 10 m extending seaward.  

Within the mangroves, a combination of the automatic level and theodolite were used. The limited satellite coverage 

within the mangroves prevented the use of instruments such as the Differential GPS. Along the mudflat, the depths were 

attained using a single-beam echo sounder mounted on a small boat. These measurements were taken over the course 

of four days to complete ten of the thirteen transects along the mudflat. Due to the shallow water depths (1 – 5 m) the 175 

single beam echo sounder gives quite accurate results and offers significant cost saving over the multi-beam versions. 

Due to the shallow depths in the first 1000 m of the mudflat (maximum 0.6 – 1 m at HW), this area was inaccessible 

with the boat and the echosounder which required a 1 m immersion depth. Depths in this section, were then derived 

using the GEBCO bathymetry measurements for 2019 and 2020. 

2.4 Sediment data collection 180 

Soil samples were collected at all eight measurement stations along the transect (Fig. 2) from the surface layers at depths 

between 2 – 5 cm. For this campaign, two OBSs were used, T9012 and T9011. Both were tested and calibrated prior to 

use by Nortek. However, during the calibration process, OBS 3+ T9011 malfunctioned. This resulted in the use of the 

OBS 3+ T9012 to test the field sediment samples (within the mangrove & on the mudflat). As such, its calibration curve 

was used to convert the instrument’s power signal (V) to turbidity (NTU). The turbidity and concentration values were 185 
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then used to form a relation, which was later used in the post processing .Water samples were also collected to 

corroborate the field measurements taken by the OBSs at three points near-bottom, mid-depth and near-surface. These 

samples were taken on the 3 December 2019, 20 December 2019, 8 January 2020 and were analysed at the laboratory 

of the Ministry of Public Works in Guyana in accordance with the applicable ASTM standards) and 15 July 2021. The 

analysis was geared towards describing the process of sedimentation of the cohesive samples (settling velocity) which 190 

has been shown to be related to the sediment concentration. In saline suspensions with sediment concentrations up to 1 

g/l, an increase in the settling velocity coincides with increasing concentrations, while the settling velocity in in-situ 

samples was observed to decrease with increasing concentrations in excess of 10 g/l.   

Along the transect, sediment properties (dry and bulk density, grain size, water content and Atterberg limits, particle 

size distribution and organic matter content) were determined as well. These values will typically filter into the 195 

parameters applied in numerical modelling practices. 

2.5 Mangrove vegetation survey 

High resolution vegetation data obtained during the campaign was transformed into vegetation cover, expressing the 

relative vegetation coverage of the horizontal surface. The quantification of the vegetation elements was achieved using 

10 m x 10 m quadrants along all of the transects. The quadrants were spaced at 30 m, with the exception of the initial 200 

20 m between the seawall and the first quadrant. With the vegetation cover at varying depths across the eleven transects, 

correlation was then determined with the observed wave dissipation.  

The vegetation survey method further divided each quadrant into three equally spaced transects, along which all trees 

were tagged and the characteristics such as the height, diameter and species were recorded. This random sample was 

then used as a full representation of the characteristics within the quadrant. The diameter of the tree trunks was measured 205 

at stipulated heights: 0.1 m, 0.5 m, 1 m, 1.5 m, 2 m and at breast height, 1.3 m (where possible). This procedure applied 

to both the Avicennia germinans and Laguncularia racemosa species, however for the Rhizophora mangrove (often 

very sparse and young trees), additional extensive details were recorded for the prop roots. All Rhizophora trees in the 

plots were counted and diameters of all roots, stems and branches were measured at the same elevations above the bed. 

The overall height of the tree was also recorded with the aid of the surveying staff and a fabricated measuring rod.  210 

For the seedlings within the quadrant, a 1 m x 1 m quadrant was used at three random locations within the 10 m x 10 m 

vegetation plot to count the number of seedlings and pneumatophores, and determine their height and diameter. The 

height and diameter of the pneumatophores were measured for 20 randomly chosen pneumatophores per subplot (1 m 

x 1 m). In the post processing, the diameters measured were categorized in three groups: 0 – 40 mm, 40 – 90 mm and 

90 – 130 m.  215 

Salinity and temperature readings were taken at three randomly spaced points within the transect. This process was 

documented with scaled photographs for qualitative characterization of the geometry and the interaction with the 

hydrodynamics. 

The vegetation data was then transformed into spatially explicit vegetation densities. In achieving this, the data was first 

transformed into the total horizontal coverage of vegetation elements within each of the 10 m x 10 m quadrants at 220 

different levels above the bed. After which, the volume of the vegetation within a water column of arbitrary depth was 

calculated by integrating the horizontal vegetation coverage over the depth. The density was then expressed as the 

relative vegetation volume compared to the total submerged volume. 
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2.6 Hydrodynamic data collection 

Eight (8) high quality sensors, consisting of a mixture of pressure transducers (PTs) and Acoustic Doppler Velocimeters 225 

(ADVs) were deployed for collecting wave data, water levels and currents along the transect MB shown in Fig. 2. These 

sensors are robust and the internal memory and battery housing facilitated autonomous data collections for periods of 

up to several weeks, depending on the sampling frequency and battery quality.  

Six (6) pressure transducers (PTs) were used to collect the water levels and wave heights. These were deployed at 

stations MB 1, MB 2, MB 4, MB 6, MB 7 and MB 8 over the seven weeks of the field campaign. The setup of the wave 230 

loggers, in addition to the ADVs, is intended to capture the wave attenuation over the mudflat as well as within the 

fringe, and the fringe potential to attenuate both the swell and infragravity waves. As a result, the PTs were configured 

to record pressure data continuously at a 5 Hz sampling frequency. The PTs were placed at heights above the bed ranging 

between 5 – 15 cm, but most deployments tried to maintain a height of 6 cm above the bed in order to start the data 

collection at shallow water depths. 235 

Two ADVs were used to collect water level data, flow velocity and flow directional data as well as data regarding the 

suspended sediment concentration. The ADVs collected data at a sampling interval of 30 mins and a frequency of 4 Hz 

over 20 min. bursts lengths. The ADVs were deployed at two locations, MB 3 and MB 5 over five deployments spanning 

the period of seven weeks. This allowed for the cleaning of the sensors from blockages due to the high sediment 

concentrations. The probe was placed at 13 cm above the bed within the mangroves to ensure that it would be immersed 240 

during neap/ low tide. Station MB 3 was located within the mangrove fringe while station MB 5 was located on the 

mudflat. The frames were positioned perpendicular to the prevailing tidal flow direction to ensure that minor 

disturbances, if any, were created. 

Next to these high-frequency pressure transducers, low-frequency pressure (and temperature) loggers (Conductivity, 

Temperature & Depth  loggers (CTD)) were deployed during the field campaign. The CTD logger (Fig. 4 B) was set-245 

up at station MB 1 and collected pressure data with a sampling interval of 5 minutes. 

2.7 Processing hydrodynamic data 

Obtained pressure data from the pressure transducers were corrected for the atmospheric pressure prior to the conversion 

to water depths using linear wave theory. Meteorological data correlated well with the measurements of the CTD and 

showed that the atmospheric pressure ranged between 10.26 – 10.45 m H2O.  250 

For both sets of instruments, the resulting data is pre-processed using filtering, averaging and data correction, similar to 

Horstman (2014). Inaccurate data is removed by only selecting data above a mean correlation threshold for the return 

signals of the ADV’s receiver probes, which is 80% (Colosimo et al., 2020; Chanson et al., 2008). Due to the filtering 

procedure major disturbances (e.g. fishing boats) and minor disturbances (e.g. air bubbles) were removed. The filtered 

data showed continuous data without gaps throughout the duration of the deployment. 255 

Spectral analysis of the obtained wave signal was executed according to the Hegge and Masselink (1996) Fourier 

analysis scheme, resulting in wave energy density spectra for each burst. From these energy density spectra, the total 

significant wave height Hm0 (m), mean wave period Tm01 (s) and total wave energy Etot (J/m2) were derived for each 

burst of the wave data. Subsequently, data bursts were selected for time spans during which the entire transect was 

flooded. This selection allowed the assimilation of coherent datasets of the wave characteristics at the measurement 260 

stations. The swell (>0.04 Hz) and infragravity (< 0.04 Hz) wave bands were then selected using a bandpass filter to 
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ascertain their presence and magnitude within the mangrove fringe. 

3 Results 

3.1 Mangrove density 

The measurements showed on average 12 seedlings per quadrant along every transect. There were six to eight quadrants 265 

per transect allowing for the properties of a total of 1056 trees, both black and white mangroves, to be captured. The 

Avicennia germinans was seen to be the dominant species with the Languncularia racemosa and the Rhizophora mangle 

being secondary species (Fig. 5). However, further west of the central transect (transects 10 and 11), the Languncularia 

racemosa, was equally balanced with the Avicennia germinans in the outer quadrants as seen in Fig. 5. Noticeably, the 

Languncularia species had very thin stem diameters as compared to the Avicennia but the heights were comparable. 270 

The data revealed the relationships between the mangrove height and stem diameter for the two-dominant species ten 

years after the restoration. The maximum stem diameter and height for the Avicennia were 12 cm and 1300 cm 

respectively, while the Languncularia was characterized by a maximum height and diameter of 1200 cm and 7 cm 

respectively.  

The high-resolution data were transformed into the vegetation parameter AM / V (where AM  is the area of the obstacles 275 

and V is the total submerged volume), which according to Mazda et al. (1997), is key in representing the hydrodynamics 

in mangrove fringes. In addition, Petryk and Bosmajian (1975) defined the vegetation density by AM / V, but noted 

slight variations with increasing water depths. The vegetation parameter was calculated from measurements of the 

number trunks, pneumatophores, and their elements in all quadrants (Fig. 6). For the calculation of the area, the shapes 

of the trunks and pneumatophores were simplified to a cylinder. 280 

At the mean height of the pneumatophores, approximately 5 cm, the vegetation coverage for the Avincennia germinans 

was quite high ranging from 16 – 50 % (Fig. 6) due to the dense cover of the roots varying from 135 – 400 

pneumatophores / 100 m2 (Fig. 5 C and Fig. 6). Above this layer, at 10 cm, the vegetation coverage reduces gradually 

due to the large diameters for the base of the trees and multiple shoots for one plant. A sharp decrease, to less than 5%, 

is then observed in the vegetation coverage with increasing heights since the trunks taper off. 285 

3.2 Sediment properties & bathymetry 

Along the main transect, three sets of disturbed samples were collected at each of the eight (8) measurement stations 

indicated in Fig. 2 (3 sets in vegetation and 5 sets along the bare mudflat). Within the mangrove fringe, samples were 

taken from the upper layers of the forest floor (consolidated mud). While on the mudflat, due to the fluid mud layer, 

samples were retrieved from the interface of the fluid mud and consolidated mud layers. 290 

Sediment characteristics were averaged over two measurements for each test. In the laboratory, sediment samples were 

dried to determine bulk density (g/cm3). Within the fringe, the bulk density ranged from 1.39–1.66 g/cm3, while the 

density along the mudflat ranged from 1.53–1.79 g/cm3. These measurements correlated well with the range of values 

produced by field measurements along the Suriname coastline (Wells, 1977) . Grain size was determined using a 

combination of the ASTM D6913 Wet sieve method and the ASTM D7928 Hydrometer Analysis, enabling the 295 

determination of silt/clay particle diameter size between 0.0003 mm and 0.05 mm.  

All stations consistently showed that sediment was of a silty clay nature with varying degrees of silt. The grain size 
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distribution (Fig. 7) shows a high amount of clay and silt particles in the mangrove belt (MB 1, MB 2, MB 3) and along 

the mudflat, where flow velocities are higher than at the back of the mangrove. The organic matter content (Table 3) is 

highest in the centre of the mangrove, similar to other studies e.g. (Horstman et al., 2015) and lower values can be found 300 

at the back of the mangrove and in the creeks. Additionally, there is some variability in the silt/ clay content in the 

mangroves, increasing towards the edge, but this stabilizes and is consistent along the mudflat. 

The  particular  state  of  consistency of  any  particular  soil  depends  primarily  upon  the amount  of  water  present  

in  the  soil-water  system thereby  making  the  behaviour  of  soil  directly  related to  the  amount  of  water  present.  

The  Atterberg  limit (ASTM 4318-10) represents  a  water  content  at  which  the  soil  changes from one state to 305 

another. The values of the Atterberg limits of the soil samples are shown in Table 3. The  liquid  limit  ranges  from  

35%  to  99%  with  an average  liquid  limit  of  61%.  The  plasticity  index which  indicates  the  degree  of  plasticity  

of  a  soil ranges  from  15%  to 66%  with  an  average  plasticity index  of  36%.  From  the  results  obtained,  MB 1, 

MB 2 and MB 3 can be classified as soils with high plasticity because  their  plasticity  indices  ranged between 47 to 

66; while  stations MB 4, 5, 6, 7 and 8 range from medium to high plasticity clays.    310 

 Shallow water waves propagating over the muddy bottom maintains a large volume of sediment in suspension. Wells 

(1977), showed that during mudbank periods, the suspended concentrations are orders of magnitude higher than during 

the interbank periods. High concentrations were recorded by the optical backscatter instruments (OBS 3+) and 

frequently exceeded the measuring capacity of the instruments (< 5 g/l) (Downing, 2006). The presence of a fluid-mud 

bottom, with higher suspended concentrations, changes the form of incoming waves from sinusoidal to a solitary- like 315 

appearance (flatter troughs). Sediment suspension by waves is more likely to occur than by tidal currents in this region 

due to the solitary wave characteristics over the fluid mud, where high concentrations are observed (Wells et al., 1978; 

Wells and Coleman, 1981a). Wave shear stresses generally exceed the stress by tidal currents, and concentrations decay 

seaward. 

The OBS 5+ (and similar capacity turbidity sensors with a capacity of 50 g/l or higher) is therefore the recommended 320 

choice for data collection campaigns along the north eastern South American coast. Field samples taken confirmed the 

observations from the instruments as concentrations varied between 40 g/l to 60 g/l along the intertidal mudflat, which 

is characteristic for fluid mud (Fig. 8). Fluid mud refers to the sediment-water mixture in which the sediment 

concentration is greater than 10 g/l (Krone, 1962; Wells and Coleman, 1981b). The mean settling velocity was 

determined graphically and ranged between 0.02 mm/s to 0.2 mm/s. 325 

There was limited variability in the concentration across the depth, and as such the 2D-depth averaged representation is 

apt at capturing the nearshore processes for similar mangrove-mudflat systems. For the entire coastal plain, the 

movement of the mudbanks offshore dictates that spatial and temporal variations in the concentrations are expected. 

The measured mud concentrations (similar to Anthony (2016)), generally range  from  very  high-suspended  sediment  

concentrations  (1-10 g/l), and  through the  fluid  mud,  to  settled  mud, ranging from under-consolidated (< 650 g/l) 330 

to over-consolidated beds (>750  g/l). Therefore, this shows the extensive depth of the fluid mud layer along the Guyana 

coast which exceeds often 1 m and potentially covers the entire water depth. 

3.3 Wave climate  

Time-averaged wave energy density spectra at all cross-shore monitoring positions are plotted for each deployment 

(periods with spectra for less than eight positions are due to malfunctioning sensors). Obtained wave data cover a wide 335 
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range of tidal conditions, although neap tides are poorly represented in the data as water levels remained too low to 

flood the entire transect.  

Despite the high-energy period observed over the last deployment (Fig. 9 and Fig. 11) there were overall periods with 

moderate wave conditions (Fig. 10). The wave energy density spectra at the front most monitoring positions at both 

transects were found to be independent of the local water depth. In general, the observed wave energy was low during 340 

the first two periods of data collection (Fig. 9), but heightened from mid December when wind directions turned onshore. 

Wave energy increased during the subsequent deployments with the most energetic conditions being observed in the 

December/January deployment (Fig. 9, Fig. 10). This may be attributed to tropical storms or hurricanes in the Atlantic 

Ocean or Caribbean Sea, as well as from severe depressions originating from the northern part of the Atlantic Ocean 

((Van Ledden et al., 2009). 345 

The wave spectra for the Chateau transect were not characteristically uni-modal but the mean wave periods varied 

mainly between either 2 – 7 s for all deployments. Offshore, the wave climate is characterised by average peak periods 

between 6  and 10 s with highs of 16 s during the period of September to April. The transect was typically exposed to 

swell waves (10 – 20 s) and infragravity waves (25 – 250 s) during the deployments. The infragravity waves ranged 

between 5 – 10 cm in height while the swell waves were 20 - 80 cm. 350 

Local increases of the wave energy density in the swell wave regime was observed between consecutive sensors during 

the measurements (Fig. 9 and Fig. 10). Such an increase of the energy density of the low-frequency component of the 

energy density spectra can be induced by (i) enhanced shoaling of shorter waves and (ii) energy transfer to lower 

frequencies by nonlinear wave–wave interactions (Elgar and Raubenheimer, 2008). 

3.4 Cross-shore changes in wave properties 355 

Changes of the wave characteristics along the transects were obtained from the wave energy density spectra for each 

data collection period (Fig. 10). Typical incident waves did not exceed 70 cm in height. While the significant wave 

heights decreased along the transect, mean wave periods were slightly increasing towards the back of the forest. Mean 

wave periods changed from 4.0–4.5 s to 4.0–5.0 s (Fig. 11). 

This is corroborated by the wave energy density spectra presented in Fig. 9, showing that the shorter sea waves (i.e. 360 

frequencies > 0.1 Hz) lost more energy when propagating into the forest than the longer swell waves (< 0.1 Hz). Hence, 

shorter waves got attenuated more effectively when propagating into the forest, as opposed to the longer-period swell 

waves that hardly got attenuated, giving rise to an increase of the mean wave periods. 

Observed wave heights to measured water depths ratios ranged from 20% along the mudflat to 70% within the 

mangroves (Fig. 11). Wave breaking occurs for wave heights exceeding 60 – 83% of the water depth (Battjes and Stive, 365 

1985). Hence, wave breaking could not have contributed significantly to the wave energy losses along the mudflat 

portion of the transect, but was contributed to some extent within the mangroves. Therefore, we conclude that the 

observed attenuation of wave energy must have been caused by drag and friction forces induced by the mangrove 

vegetation and interactions with the forest floor along with minimal wave breaking. 

4 Wave attenuation potential for mangrove belt 370 

Our field observations represent relatively mild conditions with significant wave heights ranging from 0.5 – 1.0 m. 
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Figure 12 provides a clear depiction of the attenuating capacity of both the mudflat and the mangrove vegetation.  Due 

to bed friction, the wave height attenuated significantly by some 85 – 90 % over the mudflat from offshore to the edge 

of the mangrove fringe. The mangroves are able to reduce the height further by 50% within the first one-third (120 m) 

of the fringe width. This corresponds well with other field measurements collected in forests in Vietnam (Cuc et al., 375 

2015; Mazda et al., 2006; Vo-Luong and Massel, 2008). At the most landward point (~ 340 – 360 m), this section is 

predominantly dry except for spring tides. However, even during spring tides, the waves heights did not exceed 0.1 –  

0.24 m within the landward sections of the fringe during the field campaign. This corresponds to a further 30 – 40 % 

decline in the wave height. A contrasting difference between the Guyana coast and those of Vietnam lies in the extensive 

layers of fluid mud which certainly contribute towards the attenuating capacity of these mudflats (Gratiot et al., 2017; 380 

Kit, 2016). 

The rate of wave height reduction (α) per unit distance in the direction of wave propagation is defined as the reduction 

in wave height (Δ Hs,0) as a proportion of the initial wave height (Hs,0) over a distance (∆x) travelled by the wave (see 

Eq. (1)). The unit of ‘α’ is m-1. For example, when wave height is reduced by 1% over a distance of 1 m, then r = 0.01 

m-1 as calculated using Eq. (1). 385 

𝛼 = −
∆𝐻s, 0 

𝐻s, 0 
.

1

∆𝑥
 (1)   

Using Eq. (1), the attenuation rate within the Chateau Margot mangrove fringe corresponds to a range of 0.002 - 0.0032 

m-1 . On the mudflats the attenuation rate varies between 0.0003 – 0.0004 m-1. 

5 Data availability 

The data presented in this paper have been published at 4TU Centre for Research Data (4TU.ResearchData) following 390 

the FAIR principles (Wilkinson et al., 2016), and can be accessed via https://doi.org/10.4121/c.5715269 (Best et al., 

2022) for the public download of the entire collection: Advancing Resilience Measures for Vegetated Coastline 

(ARM4VEG) , Guyana. The collection contains five key datasets including the in-situ concentration data, wave data, 

bathymetry, sediment properties and mangrove characteristics (Best et al., 2022). The datasets are published in a 

combination of  .mat, .xlsx and .xyz formats with the file naming convention which specifies the measurement location 395 

along transect MB. A map is available, indicating the measurement locations of each dataset. The underlying raw data 

as produced by the instruments together with the scripts with metadata are maintained under version control. Processing 

scripts are written in MATLAB code and the metadata in the mat. files specify the date and version number of underlying 

raw source data and in order to provide replicable information. 

6 Discussion and conclusions 400 

This paper presents field observations of the vegetation structure across the submerged depth, including wave 

attenuation and sediment dynamics along one cross-shore transect in coastal mangroves in Guyana. This forms the first 

extensive dataset of measurements since the 1960’s – 1970’s during the NEDECO projects along the Suriname and 

Guyana coasts. The collection of wave data in combination with detailed vegetation measurements was unprecedented, 

but is of great importance to the further development of knowledge on the attenuation of waves on mudflats and in 405 

mangrove belts. 

The detailed characterization of the vegetation cover at the data collection site emphasizes the variability of mangrove 
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vegetation structure in both the vertical and the horizontal direction. Vegetation densities were strongly dependent on 

the dominant vegetation type. Volumetric vegetation densities within 1 m above the forest floor were found to be 0.91 

– 2.64 % in the Avicennia zones. Vegetation densities in the Laguncularia zones were (much) lower: 1.16 – 1.71 %, 410 

increasing up to 50 % for water depths less than 1 m. 

Mean observed significant wave heights decreased (on average) by 50 - 76% by bed friction and mangrove drag along 

the Chateau Margot transect, which was 1620 m long. Wave attenuation was most efficient for short sea waves (< 10 

s), while swell waves (10 – 20 s) and infragravity waves ( 25 – 250 s) tended to maintain their energy. 

The generalized total wave attenuation rates in the mangrove belt, obtained by the gradient of the relation between wave 415 

height reduction and incident wave height, ranged between 0.002 and 0.0032 m− 1 while it varied between 0.0003 and 

0.0004 m-1 on the mudflat. These rates showed a significant positive correlation with the volumetric vegetation density. 

Further, studies show that a minimum attenuation capacity of 50 % is needed to prevent wave reflection at the inner 

wall of the dike which would lead to increased scour volumes (Van Wesenbeeck et al., 2021; Winterwerp et al., 2020). 

These features can substantially reduce costs for retrofitting of levees under changing future wave climates.  420 

These findings emphasize the coastal defence function of mangroves and provide a starting point for modelling studies 

to investigate the processes contributing to the attenuating and sediment trapping capacity of mangroves. 
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Figures & Tables 

 

 570 

Figure 1: ( A & B ) Satellite imagery of the data collection site along the Chateau Margot coastline located on the north 

eastern coastline of Guyana, with the location of the transect used for the measurements, (MB). (C) A timeline for the 

development of the mangrove fringe between 2011 - 2020. Here the mangrove area is shown in 2011, prior to the restoration 

works and in 2020. Over the last 10 years, the fringe has developed a width ranging from 120 m to 400 m. 

 575 

 

Table 1 Historical Wave Data (between the years 1969 – 1971 ) presented at  locations along the coastal area of Guyana 

(NEDECO 1972,Van Duivendijk, et al., 1982). 

Data Location 

Distance 

from coast 

(km) 

Depth 

(m) 

Significant Wave 

Height (m) 
Period (sec.) 

Average Maximum Average Maximum 

Offshore (ERA5 

hindcast) 
50 25 - 45 1.3 4.0 6 13 

Demerara Beacon 

(NOAA & AWAC) 
19 6.5 0.5 1.3 8 12 

Chateau Margot (PT) 1.6 3 0.4 0.8 4 5 

 

 580 
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Figure 2: Overview of the alignment and bathymetric development of the transect from 1970 – 2020. (A) The north eastern 

alignment of the transect, MB with the instrument locations shown at the red dots. (B) The evolution of the bed level spanning 

the mudbank cycle: pre- mudbank presence, with the mudbank, pre- restoration and almost 10 years post restoration. 

Characteristic tidal water levels are indicated at the right axis (HWS = high water spring HWN =high water neap; LWN = 585 
low water neap; LWS = low water spring). 

Table 2: Criteria considered for the establishment of field stations and the description of all station points outlined in Figure 

2 A. 

Description of Measurement Stations 

along Transect MB 
Criteria for the Selection Process 

MB 1: relative dense forest in the back of 

the mangrove 23m away from the edge of 

the toe of the concrete dyke (sea wall). 

• Mangrove fringe should be homogeneous around the 

measurement locations, i.e. there should not be any rivers, 

tidal creeks, sudden elevation changes or other disturbances. 

• The transect should consist a mudflat in front of the forest, a 

forest fringe and an inner mangrove part (Horstman, et al., 

2014), which should all be convincingly flooded (more than 

0.20m, because of the equipment) during spring tide. 

• The vegetation density should increase from the mudflat (front 

of the mangrove forest) to the inner part of the mangrove 

forest. At the measurement locations, the density should not be 

too dense, i.e. the additional flow and eddies created by the 

vegetation should not disturb the measurements. 

MB 2: approximately 100m from the toe 

of the seawall within the mangrove. 

MB 3: approximately 200m from the toe 

of the seawall within the mangrove fringe. 

MB 4: the seaward edge of the mangrove 

fringe. 

MB 5, 6, 7, 8: the mudflat in front of the 

mangrove, with MB 8 at 1620m seaward. 
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 590 

Figure 3: The setup of the vegetation quadrants and survey methodology for the vegetation data collection 

 

 

 

Figure 4: Simultaneous deployment of pressure transducers (gold arrows), acoustic doppler velocimeters (white arrow), 595 
Conductivity, Temperature & Depth loggers (orange arrow) and the optical backscatter sensors (black arrows) at the 

Chateau Margot transect (MB). (A) A view of station MB 3 in the sparser Avicennia dominated forest approximately 110 m 

away from the concrete dyke. (B) A view of station MB 1 in the denser part of the Avicennia dominated forest approximately 

30 m from the concrete dyke. (C) A view of station MB 5 (located on the mudflat) used in the test deployment and field 

calibration of all of the instruments. 600 
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Figure 5 :Summary of the spatial variation in the mangrove species and density along the eleven transects at the Chateau 

Margot mangrove fringe. (A) The demarcation of zones for the two dominant mangrove species, Avicennia germinans (Black 

mangrove) and the Languncularia racemosa (White mangrove). (B) Variation in mangrove density (number pf plants per 605 
100 m2) for the black and white mangroves. (C) Density variation along depths 0 – 5 cm for the mangrove roots 

(pneumatophores) and the seedlings for the Black mangroves (dominant species). Across the transects there were four (4) red 

seedlings. 
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 610 

Figure 6: Variation in the vegetation density, AM / V with elevation above the forest floor expressed as a percentage. (A) 

Horizontal vegetation density reduces with increasing elevation above the forest floor. (B) Vegetation characteristics for the 

Avicennia germinans with the measurement indicators starting from 0.05 m and culminating at 2 m. 
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 615 

Figure 7 (A) Topographic survey of the data collection site (1000 m x 3500 m), (B) Variation in the sediment particle diameters 

at each station point attained from the hydrometer tests, (C) comparison of the Atterberg limits across transect, MB. 

 

 

Figure 8 Variation in the suspended sediment concentration  across the water depth at 20 cm, 50 cm and 100 cm above the 620 
bed level with comparison to calibration concentrations observed in the laboratory 
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Table 3 Summary of the Soil Characteristics Measured at every data collection frame along  the main transect 

Stations 
Moisture 

(%) 

Specific 

Gravity 

(-) 

Organic 

content 

(%) 

Bulk 

Density 

(kg/m3) 

Dry 

Density 

(kg/m3) 

Liquid 

Limit 

Plastic 

Limit 

Plasticity 

Index 

Slump 

(cm) 

Percent 

passing 

No. 200 

sieve (%) 

Clay 

Content 

(%) 

MB 1 116.98 2.67 9.09 1388 571.32 33.00 66.00 2.60 33.00 99.41 46.10 

MB 2 116.71 2.65 18.10 1656 1080.00 33.00 54.00 5.70 33.00 98.92 46.17 

MB 3 95.34 2.65 6.47 1460 596.89 32.00 47.00 4.20 32.00 99.31 51.29 

MB 4 103.50 2.65 6.28 1612 826.43 22.00 31.00 8.00 22.00 98.90 49.16 

MB 5 79.01 2.66 3.88 1662 839.95 24.00 21.00 8.70 24.00 99.70 55.86 

MB 6 47.22 2.66 1.51 1852 1204.74 20.00 15.00 3.70 20.00 99.07 67.93 

MB 7 87.81 2.64 3.48 1532 755.29 20.00 32.00 7.50 20.00 98.87 53.24 

MB 8 60.54 2.68 2.95 1792 1260.64 16.00 22.00 8.90 16.00 99.60 62.29 

AVG. 88.39 2.66 6.47 1619.25 891.91 61.00 25.00 36.00 6.16 99.22 54.01 

 

 

 625 

Figure 9  Averaged wave energy density spectra of simultaneously obtained wave data during full inundation of the cross-

shore transect, MB at Chateau Margot each for five different periods (A – E).  (Lower left) Tidal conditions during the field 

campaign. The shaded areas in the panel represent the data collection periods of the spectra. Sensor positions (MB 1-8 )refer 

to the positions indicated in Fig. 2. 

 630 
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Figure 10 Averaged wave energy density spectra of simultaneously obtained wave data during full inundation of the cross-

shore transect (MB) at Chateau Margot, each for the period of January 6 – 11, 2020. Sensor positions, MB1 – MB8 (A -H),  

refer to the positions indicated in Fig. 2. The sensors located on the mudflat are MB4, MB5, MB6, MB& and MB8 and extend 

from the mangrove edge to 1620 m offshore. In the mangrove, sensors MB1, MB2 and MB3 are placed at points ¼ , ½ and ¾ 635 
of the forest width. (I) Swell & Infragravity wave bands along the coastline at position MB 8. 
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Figure 11 Spectral conditions along the transects: (A) significant wave heights Hs [m]; (B) mean wave periods Tm [s]; (C) 

Depth [m]; (D) wave heights divided by water depths Hs/d [−]; Plots of the wave characteristics present mean observed values, 640 
with bands representing the maximum and minimum values. Data comprise five days of observations spanning deployment 

5.  

 

 

Figure 12 Wave Heights, Wave Periods and water depths (left) at location at approximately 40% of the fringe width and at 645 
(right) 1.6 km offshore and along the Chateau Margot coast, Guyana. 
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